Find the missing measures. Give circumference and area in terms of pi and to the nearest tenth.

1) Circle

2) Circle

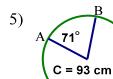
3) Circle

4) Circle

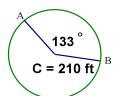
- radius = 18 in
- r = 22.5 mm

- r = 15.12 m
- r = 7.05 ft

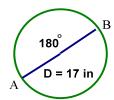
- diameter = 18 in (2)
- d = 45 mm

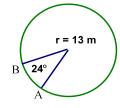

- d = 30.24 m
- d = 14.1 ft

- = 36 in
- Circum. = 36π in = 113.1 in
- $C = 45\pi \text{ mm} = 141.4 \text{ mm}$
- C = 95 m


 $C = 14.1\pi \text{ ft}$ = 44.3 ft

- Area = $324\pi in^2$ = $1017.9 in^2$
- $A = 506.25 \pi \text{mm}^2$ = 1590 mm²
- $A = 228.6\pi \ m^2 = 718.17 \ m^2$
- $A=156\ ft^2$


Find the length of minor arc AB using a proportion.

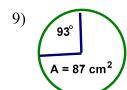

6)

7)

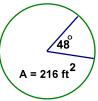
8)

$$\frac{x}{93cm} = \frac{71}{360^{\circ}}$$

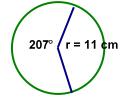
$$x = 18.34cm$$

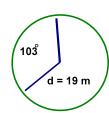

$$\frac{x}{210 \, \text{ft}} = \frac{133^{\circ}}{360^{\circ}}$$

$$x = 77.58 ft$$


x = 26.7 in

$$x = 5.45 \text{ m}$$


Find the area of the sector using a proportion.

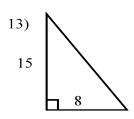

10)

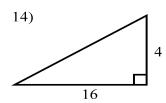
11)

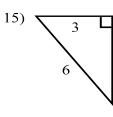
12)

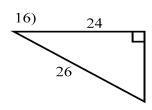
$$\frac{x}{87\,cm^2} = \frac{93^\circ}{360^\circ}$$

$$x = 22.48cm^2$$


$$x = 28.8 \text{ ft}^2$$


$$\frac{x}{121\pi cm^2} = \frac{207}{360}$$


$$x = 218.58cm^2$$


$$x = 57.53m^2$$

Find the length of the missing side.

$$a^{2} + b^{2} = c^{2}$$

$$8^{2} + 15^{2} = c^{2}$$

$$64 + 225 = c^{2}$$

$$289 = c^{2}$$

$$\sqrt{289} = \sqrt{c^{2}}$$

17 = c

$$a^{2} + b^{2} = c^{2}$$

$$3^{2} + b^{2} = 6^{2}$$

$$9 + b^{2} = 36$$

$$b^{2} = 27$$

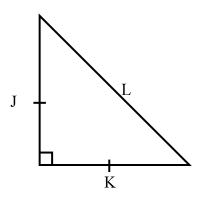
$$\sqrt{b^{2}} = \sqrt{27}$$

b = 5.2

Given the length of one side of the 45-45-90 triangle at the right find the other two sides to the nearest tenth..

17)
$$J = 15$$

 $K = 15$
 $L = 15\sqrt{2}$


18)
$$K = 14$$

 $J = 14$
 $L = 14\sqrt{2}$

19)
$$K = 6$$

$$J = 6$$

$$L = 6\sqrt{2}$$

20)
$$L = 20\sqrt{2}$$

 $K = 20$
 $J = 20$

21)
$$L = 11\sqrt{2}$$
 $K = 11$

22)
$$J = 3\sqrt{2}$$

$$K = 3\sqrt{2}$$

$$L = 3\sqrt{2} \cdot \sqrt{2}$$

$$L = 3 \cdot 2$$

$$L = 6$$

23)
$$L = 18$$

24)
$$J = 17$$

$$K = 17$$

$$K = \frac{18}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$

$$K = \frac{18\sqrt{2}}{2}$$

$$K = 9\sqrt{2}$$

$$J = 9\sqrt{2}$$

$$L=17\sqrt{2}$$

25)
$$K = 10\sqrt{2}$$

 $J = 10\sqrt{2}$

$$L = 20$$

$$K=4\sqrt{2}$$

$$J = 4\sqrt{2}$$

Given the length of one side of the 30-60-90 triangle at the right find the other sides to the nearest tenth.

$$T = 5\sqrt{3}$$

$$V = 10$$

28)
$$U = 15$$

$$T = 15\sqrt{3}$$

$$V = 30$$

29)
$$V = 16$$

$$U = 8$$

$$T = 8\sqrt{3}$$

$$T = 8\sqrt{3}$$

$$(28) U = 13$$

$$T = 15\sqrt{3}$$

$$V = 30$$

29)
$$V = 16$$

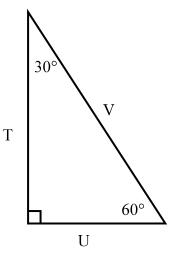
$$U = \delta$$

30)
$$T = 12\sqrt{3}$$

$$U = 12$$

$$V = 24$$

31)
$$U = 9$$


$$T=9\sqrt{3}$$

$$V = 18$$

32)
$$V = 32$$

$$U = 16$$

$$T = 16\sqrt{3}$$

33)
$$T = 7\sqrt{3}$$

$$U = 7$$

$$V = 14$$

34)
$$U = 2\sqrt{3}$$

$$T = 2\sqrt{3} \cdot \sqrt{3}$$

$$T = 2 - 3$$

$$T = 6$$

$$V = 4\sqrt{3}$$

35)
$$U = 13\sqrt{3}$$

$$T = 13\sqrt{3} \cdot \sqrt{3}$$
$$T = 13 \cdot 3$$

$$T = 39$$

$$V=26\sqrt{3}$$

$$U = \frac{17}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$$

$$U = \frac{17\sqrt{3}}{3}$$

$$V = \frac{34\sqrt{3}}{3}$$