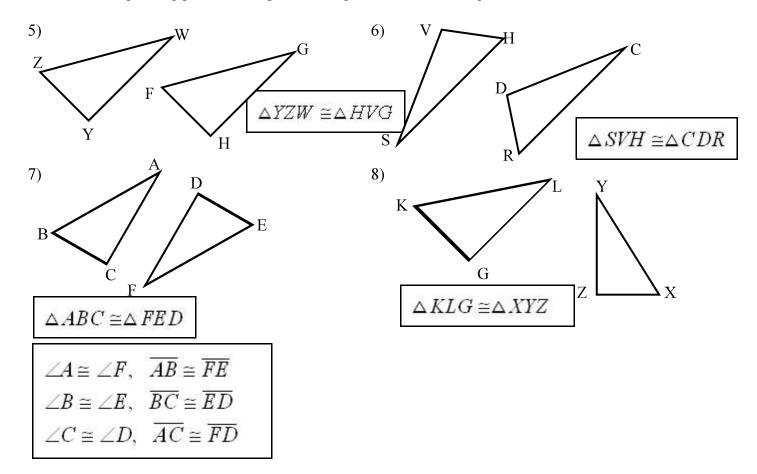
Name the corresponding parts for each pair of congruent triangles.

1)
$$\triangle ABC \cong \triangle HIJ$$

2)
$$\Delta YES \cong \Delta NOP$$

3)
$$\Delta CAT \cong \Delta GOP$$


4)
$$\Delta SUV \cong \Delta XYZ$$

$$\angle A \cong \angle H$$
, $\overline{AB} \cong \overline{HI}$,
 $\angle B \cong \angle I$, $\overline{BC} \cong \overline{IJ}$,
 $\angle C \cong \angle J$ $\overline{AC} \cong \overline{HJ}$

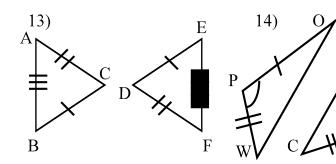
$$\angle C \cong \angle G$$
, $\overline{CA} \cong \overline{GO}$, $\angle A \cong \angle O$, $\overline{AT} \cong \overline{OP}$,

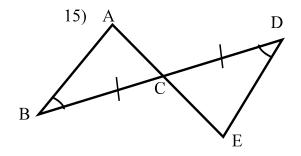
$$\angle T \cong \angle P \qquad \overline{CT} \cong \overline{GP}$$

Name the corresponding parts in each pair of triangles, and make a congruence statement..

Given some corresponding parts in two congruent triangles, make a congruence statement about the triangles.

9)
$$\overline{RS} \cong \overline{JK}$$
, $\overline{RT} \cong \overline{JL}$, $\angle T \cong \angle L$, $\overline{ST} \cong \overline{KL}$


$$\triangle RST \cong \triangle JKL$$


10)
$$\angle A \cong \angle N, \angle C \cong \angle P, \overline{BC} \cong \overline{OP}, \overline{AC} \cong \overline{NP}$$

$$\triangle BCA \cong \triangle OPN$$

- 11) Δ FDR $\cong \Delta$ WSC. Which of the following is also a true statement?
- A) $\overline{FD} \cong \overline{SC}$
- B) $\Delta FDR \cong \Delta WCS \ \underline{C}) \ \Delta DRF \cong \Delta SCW$
- D) $\angle R \cong \angle W$
- 12) $\Delta RAL \cong \Delta DXV$. Which of the following is also a true statement?
- A) $\angle A \cong \angle V$
- B) $\overline{AL} \cong \overline{XV}$
- C) $\Delta LRA \cong \Delta DXV$
- D) $\Delta RAL \cong \Delta XVD$

What information is shown in each drawing?

$$\overline{AB} \cong \overline{FE}$$

 $\overline{AC} \cong \overline{FD}$
 $\overline{BC} \cong \overline{ED}$

$$\overline{PO} \cong \overline{JK}$$
 $\overline{PW} \cong \overline{JC}$
 $\angle P \cong \angle J$

$$\angle ACB \cong \angle ECD$$

 $\overline{CB} \cong \overline{CD}$
 $\angle B \cong \angle D$