Quadratic Equations 2.1 Algebra 2	
1) What is a y-intercept? What is the first step in finding one? Why?	2) What is an x-intercept? What is the first step in finding one? Why?
3) What is a root in the context of graphing equations?	4) What does the zero-product property say?
Identify the quadratic, linear, and constant terms. 5) $y = 5x^2 - 11x + 4$ 6) $f(x) = 6x^2 + 7x$	Give the values of a, b, and c. 7) $q(x) = (3x + 4)(x - 1)$ 8) $y = 4x + 10$

Use the zero-product property to find the x-intercepts. Graph with the vertex and intercepts. 9) $f(x) = x^2 - x - 12$ 10) $d = c^2 + 7c + 10$

Use the zero-product property to find the zeroes of the functions. Graph with the vertex and intercepts. 11) $p(x) = x^2 - 6x$ 12) $k(x) = x^2 - 16$

Use the zero-product property to find the roots of the functions. Graph with the vertex and intercepts. 13) $t(x) = 2r^2 - 3r - 9$ 14) $v(x) = x^2 - 10x + 25$ Factor the following polynomials. 15) $x^2 + 6x + 9$ 16) $x^2 - 18x + 81$ 17) $q^2 + 2q + 1$ 18) $d^2 - 14d + 49$

Find the value of c that will make the following polynomials a perfect square. 19) $x^2 + 12x + c$ 20) $p^2 + 10p + c$ 21) $q^2 - 8q + c$ 22) $k^2 - 20k + c$

Graph the following equations by doing the following:

- Complete the square to put the equations in standard form and find the vertex of each parabola.

- Set y equal to zero, and solve for x to find the roots.

23) $f(x) = x^2 + 6x$ 24) $y = x^2 + 4x - 5$

25)
$$y = x^2 - 6x - 16$$

26) $y = x^2 + 14x + 24$

27) $f(c) = c^2 + 12c + 20$ 28) $f(x) = x^2 + 18x + 72$

Solve using the zero-product property.Solve by completing the square.29) $0 = v^2 + 3v$ 30) $0 = 3t^2 + 11t - 4$ 31) $0 = c^2 + 6c + 5$ 32) $0 = w^2 + 8w$