KEY

Trigonometry 1 Geometry

Give the six trigonometric ratios for the followings triangles.

Use ΔXYZ to name the hypotenuse, opposite side, and adjacent side for each reference angle.

5) ∠X 6) ∠Y

Hypotenuse: \overline{XY}	Hypotenuse: \overline{XY}
Opposite: \overline{ZY}	Opposite: \overline{XZ}
Adjacent: \overline{XZ}	Adjacent: \overline{ZY}

Use ΔTVW to name the hypotenuse, opposite side, and adjacent side for each reference angle.

7) $\angle T$ 8) $\angle W$

Hypotenuse: WT	Hypotenuse: \overline{WT}
Opposite: VW	Opposite: \overline{TV}
Adjacent: \overline{TV}	Adjacent: <i>VW</i>

Use ΔQRS to find each trigonometric ratio. Then use a calculator to approximate each ratio to four decimal places.

9)
$$\frac{Opposite \angle Q}{Hypostenuse} = \frac{40}{41}$$
 10) $\frac{Adjacent \angle S}{Opposite \angle S} = \frac{40}{9}$

11)
$$\frac{Hypotenuse}{Adjacent \angle S} = \frac{41}{40}$$
 12) $\frac{Opposite \angle R}{Adjacent \angle R} = NotPossible$

In the figure at the right the ratio
$$\frac{Opposite \angle A}{Adjacent \angle A} = \frac{8}{15}$$
.

13) If BC = 16, find lengths AB and AC.

$$AB = 30$$
$$AC = 34$$

14 If AB = 75, find lengths BC and AC.

BC = 40 AC = 85

In the figure at the right the ratio $\frac{Opposite \angle P}{Hypotenuse} = \frac{12}{37}$. 15) If PR = 105, find lengths PQ and QR.

PQ = 111QR = 36

16) If PQ = 185, find lengths PR and QR.

PR = 175QR = 60

Q

9

R

